>
Fa   |   Ar   |   En
   ballantine’s type theorem for complex symplectic group  
   
نویسنده tam tin-yau
منبع دوازدهمين سمينار جبر خطي و كاربردهاي آن - 1402 - دوره : 12 - دوازدهمین سمینار جبر خطی و کاربردهای آن - کد همایش: 02230-97347 - صفحه:0 -0
چکیده    In the late 1960 ballantine showed that every matrix with positive determinant is a product of five positive definite matrices. we consider the complex symplectic group sp(2n, c):sp(2n, c)={a∈gl(2n, c) :a^t, jna=jn}wherejn=[(0&in@-in&0)]the symplectic group is a classical group defined as the set of linear transformations of a 2n-dimensional vector space over c, which preserve the non-degenerate skewsymmetric bilinear form that is defined by jn. we show that every symplectic matrix is a product of five positive definite symplectic matrices. we also show that five is the best in the sense that there are symplectic matrices which are not product of less. this is a joint work with daryl q. granario, de la salle university, philippines.
کلیدواژه ballantine’s theorem ,radjavi’s theorem ,complex symplectic group ,symplectic positive definite matrices
آدرس , iran
پست الکترونیکی ttam@unr.edu
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved