|
|
a review on machine/deep learning techniques for defect/error detection in image processing
|
|
|
|
|
نویسنده
|
abdulzahra saad alsaide haider ,soltanaghaei mohammadreza ,hussein zayer al-lami wael ,asgarnezhad razieh
|
منبع
|
اولين كنفرانس بين المللي ايده هاي نو در مهندسي برق - 1402 - دوره : 1 - اولین کنفرانس بین المللی ایده های نو در مهندسی برق - کد همایش: 02230-21684 - صفحه:0 -0
|
چکیده
|
The detection of defects is important in quality control in manufacturing. we categorize the defects like electronic components, pipes, welded parts, textile materials, etc. we express artificial visual processing techniques aimed at comprehending the charged picture in a mathematical/analytical manner. recent mainstream and deep-learning techniques in defect detection are studied with their features, stability, and weaknesses explained. we resume with a survey of textural defect detection based on statistical, structural, and other methods. ultimately, we summarize and investigate the application of ultrasonic testing, filtering, deep learning, machine
|
کلیدواژه
|
machine learning ،deep learning ،defect/error detection
|
آدرس
|
, iran, , iran, , iran, , iran
|
پست الکترونیکی
|
r.asgarnezhad@aghigh.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|