|
|
accuracy improvement in differentially private logistic regression: a pre-trainingapproach
|
|
|
|
|
نویسنده
|
hoseinpour mohammad ,hoseinpour milad ,aghagolzadeh ali
|
منبع
|
نخستين همايش ملي هوش مصنوعي و فناوري هاي آينده نگر - 1402 - دوره : 1 - نخستین همایش ملی هوش مصنوعی و فناوری های آینده نگر - کد همایش: 03230-86475 - صفحه:0 -0
|
چکیده
|
Machine learning (ml) models can memorize training datasets. as a result, training ml models on private datasets can lead to the violation of individuals’ privacy. differential privacy (dp) is a rigorous privacy notion to preserve the privacy of the underlying training datasets. however, training ml models in a dp framework usually degrades the accuracy of ml models. this paper aims to increase the accuracy of a dp logistic regression (lr) via a pre-training module. in more detail, we initially pre-train our lr model on a public training dataset without any privacy concern. then, we fine-tune our dp-lr model with the private dataset. in the numerical results, we show that adding a pre-training module significantly improves the accuracy of the dp-lr model.
|
کلیدواژه
|
data privacy ,differential privacy ,trustworthy machine learning ,logistic regression ,pre-training
|
آدرس
|
, iran, , iran, , iran
|
پست الکترونیکی
|
aghagol@nit.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|