>
Fa   |   Ar   |   En
   learning 2-opt algorithm for the euclidean symmetric traveling salesman problem  
   
نویسنده abdolhossinzadeh mohsen
منبع شانزدهمين كنفرانس بين المللي انجمن ايراني تحقيق در عمليات - 1402 - دوره : 16 - شانزدهمین کنفرانس بین المللی انجمن ایرانی تحقیق در عملیات - کد همایش: 02230-33623 - صفحه:0 -0
چکیده    The traveling salesman problem (tsp) is known one of the np-hard problems to find the optimal solution. however, in the case that arc costs satisfy the triangle inequality there are polynomial time approximation algorithms; 2-opt algorithm is a heuristic method to obtain a good approximate solution for tsp. the proposed learning 2-opt algorithm improves the classical 2-opt algorithm to remove cross arcs and cross regions and provides a good approximate solution in a reasonable iteration. so, in the optimal solution for the euclidean symmetric tsp (es-tsp) there is neither cross arcs nor cross regions, and a learning phase determine the cross regions, and the 2-opt heuristic algorithm removes the cross arcs. a markov decision process is applied to determine the states of the learning process, and it is considered to reward function according to the improvement of the current state solution. the topology of the network and the order of nodes are learned by the proposed method, and the proper 2-opt improvement policy is implemented during transitions in the markov chain process.
کلیدواژه machain learning ,traveling salesman problem ,2-opt heuristic algorithm ,markov decision process ,approximate solution.
آدرس , iran
پست الکترونیکی mohsen.ab@ubonab.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved