>
Fa   |   Ar   |   En
   deep learning automated differential diagnosis of pharyngitis using smartphone camera  
   
نویسنده shojaei negar ,alimohammadi majid ,keyvani jahanbakhsh ,behrouzi ali ,rostami habib ,sanati amir
منبع اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
چکیده    In this article, we aimed to diagnose whether patients have bacterial pharyngitis ornonbacterial pharyngitis. to achieve this, a dataset from 579 patients was collected, and at least four general practitioners diagnosed each sample. data augmentation methods were employed to increase the sample size, and various preprocessing techniques were applied to enhance the quality of images. in this study, we utilized a convolutional neural network (cnn) and two transformers for binary classification. the results demonstrate the capability of deep learning models to classify pharyngitis into bacterial and nonbacterial categories based on images taken by smartphone cameras with high accuracy.
کلیدواژه bacterial ,nonbacterial ,pharyngitis ,deep learning ,cnns ,vision transformer ,swin transformer
آدرس , iran, , iran, , iran, , iran, , iran, , iran
پست الکترونیکی amirsanati78@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved