|
|
from molecules to clusters: unsupervised learning insights into perfume composition
|
|
|
|
|
نویسنده
|
manouchehri t. ,nematollahi a.r.
|
منبع
|
اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
|
چکیده
|
This study presents a novel application of unsupervised machine learning techniques to analyze the molecular and evaporative characteristics of perfumery compounds. a dataset comprising molecular descriptors, structural notations, and physical properties of scent compounds has been prepared using three extensive sql databases, and some well-known methodological approaches including principal component analysis (pca) and factor analysis (fa) for dimensionality reduction and hierarchical clustering (hc) are implemented to identify intrinsic olfactory families without relying on pre-existing classes.
|
کلیدواژه
|
perfumery; molecular structure; machine learning; factor analysis; principal component analysis; hierarchical clustering
|
آدرس
|
, iran, , iran
|
پست الکترونیکی
|
ar.nematollahi@shirazu.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|