>
Fa   |   Ar   |   En
   from molecules to clusters: unsupervised learning insights into perfume composition  
   
نویسنده manouchehri t. ,nematollahi a.r.
منبع اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
چکیده    This study presents a novel application of unsupervised machine learning techniques to analyze the molecular and evaporative characteristics of perfumery compounds. a dataset comprising molecular descriptors, structural notations, and physical properties of scent compounds has been prepared using three extensive sql databases, and some well-known methodological approaches including principal component analysis (pca) and factor analysis (fa) for dimensionality reduction and hierarchical clustering (hc) are implemented to identify intrinsic olfactory families without relying on pre-existing classes.
کلیدواژه perfumery; molecular structure; machine learning; factor analysis; principal component analysis; hierarchical clustering
آدرس , iran, , iran
پست الکترونیکی ar.nematollahi@shirazu.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved