|
|
an experiment study on optimal batch size of u-net convolutional neural network for edge detection
|
|
|
|
|
نویسنده
|
sedaghatjoo zeinab
|
منبع
|
اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
|
چکیده
|
The u-net architecture, initially designed for biomedical image segmentation, can be repurposed for edge detection tasks by reconfiguring the network’s focus. this paper investigates the impact of batch size, a critical hyperparameter in u-net, on the network’s performance for edge detection. we conduct experiments with three different image sizes and varying batch sizes for each image size. by analyzing the trade-offs between accuracy and stability, we identify the optimal batch size that enhances the u-net model’s performance in edge detection tasks. our study contributes valuable insights into effectively configuring batch size to improve u-net’s performance in edge detection applications.
|
کلیدواژه
|
u-net ,conventional neural network ,edge detection ,batch size
|
آدرس
|
, iran
|
پست الکترونیکی
|
zeinab.sedaghatjoo@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|