>
Fa   |   Ar   |   En
   advancing binary imbalanced classification: a novel hybrid sampling approach for noise reduction and data integrity  
   
نویسنده arefzadeh zahra ,dehghani erfan ,bozorgmehr mohammad
منبع اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
چکیده    In machine learning, dealing with binary imbalanced data classification is challenging due to unequal class sizes, leading to model bias. we propose a unique method that uses filtering, adasyn oversampling, and enn cleaning to balance data, improve minority class accuracy, and boost overall model performance, showing significant improvements in auc, f1, and g-mean metrics.
کلیدواژه imbalanced learning ,sampling technique ,classification ,adasyn
آدرس , iran, , iran, , iran
پست الکترونیکی mohammad.bzr82@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved