|
|
advancing binary imbalanced classification: a novel hybrid sampling approach for noise reduction and data integrity
|
|
|
|
|
نویسنده
|
arefzadeh zahra ,dehghani erfan ,bozorgmehr mohammad
|
منبع
|
اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
|
چکیده
|
In machine learning, dealing with binary imbalanced data classification is challenging due to unequal class sizes, leading to model bias. we propose a unique method that uses filtering, adasyn oversampling, and enn cleaning to balance data, improve minority class accuracy, and boost overall model performance, showing significant improvements in auc, f1, and g-mean metrics.
|
کلیدواژه
|
imbalanced learning ,sampling technique ,classification ,adasyn
|
آدرس
|
, iran, , iran, , iran
|
پست الکترونیکی
|
mohammad.bzr82@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|