|
|
road car accident prediction by using machine learning techniques
|
|
|
|
|
نویسنده
|
manouchehri t. ,heydari t. ,bagheri lankarani k. ,fereidooni r.
|
منبع
|
اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
|
چکیده
|
Traffic accidents globally pose a significant public health crisis, resulting in loss of life, injuries, and substantial economic burdens. predictive analytics, combining data science and health policy, offers a solution by identifying accident factors and creating proactive safety measures to save lives. this study uses machine learning to analyze traffic accident data from self-report questionnaires, revealing the importance of socio-economic status, psychosocial factors, and long driving hours in predicting accident occurrence. the research suggests interventions targeting socio-economic factors, psychological assessments and improved road safety to effectively prevent accidents.
|
کلیدواژه
|
traffic accidents; predictive analytics; machine learning; feature selection
|
آدرس
|
, iran, , iran, , iran, , iran
|
پست الکترونیکی
|
rezafereidooni@yahoo.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|