>
Fa   |   Ar   |   En
   a review on bayesian structure learning in gaussian graphical models  
   
نویسنده marzban vaselabadi nastaran ,tahmasebi saeid ,mohammadi reza
منبع اولين كنفرانس بين المللي دوسالانه هوش مصنوعي و علوم داده - 1403 - دوره : 1 - اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده - کد همایش: 03231-85169 - صفحه:0 -0
چکیده    An accurate interpretation of complicated relations among a large number of variables is of significant importance in science. one appealing approach to this task is gaussian graphical models (ggms), which lately many improvements have been carried out on it. ggms describe the conditional independence of variables through the presence or absence of edges in the underlying graph. in this paper, we recap a bayesian method for structure learning of ggms based on the birth-death mcmc (bdmcmc) algorithm. we show the application of this method on a simulated dataset.
کلیدواژه bayesian structure learning ,gaussian graphical models ,birth-death markov chain monte carlo.
آدرس , iran, , iran, , iran
پست الکترونیکی a.mohammadi@uva.nl
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved