>
Fa   |   Ar   |   En
   deep learning approach to american option pricing  
   
نویسنده motameni mahsa ,mehrdoust farshid
منبع پنجمين كنفرانس بين‌المللي محاسبات نرم - 1402 - دوره : 5 - پنجمین کنفرانس بین‌المللی محاسبات نرم - کد همایش: 02230-29559 - صفحه:0 -0
چکیده    This study focuses on pricing the american put option by applying a deep learning-based algorithm under the double heston model. the double heston model is a multi-factor stochastic volatility model that offers more flexibility in modeling the volatility term structure and better empirical fit to option prices compared to one-factor models. the option price derivation under this model leads to a linear complementarity problem. to solve this problem, we utilize the deep galerkin method (dgm), which is a method based on deep learning. our numerical results show the efficiency and accuracy of the algorithm as evidenced by comparing it with the antithetic variable least-square monte carlo (av-lsm) method.
کلیدواژه american option pricing،double heston model،deep learning،neural networks،deep galerkin method
آدرس , iran, , iran
پست الکترونیکی far.mehrdoust@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved