|
|
beyond univariate statistics: harnessing neuroinformatics and data mining for comprehensive brain understanding
|
|
|
|
|
نویسنده
|
hadizadeh tasbiti elyas ,mohammadi zanjireh morteza
|
منبع
|
پنجمين كنفرانس بينالمللي محاسبات نرم - 1402 - دوره : 5 - پنجمین کنفرانس بینالمللی محاسبات نرم - کد همایش: 02230-29559 - صفحه:0 -0
|
چکیده
|
The brain s intricate coordination requires integrating massive amounts of information from numerous disciplines. modern methods include multielectrode arrays, calcium imaging, and optogenetics offer neuron-level data. in systems and circuit neuroscience, investigating huge populations of neurons is difficult. experimental neurotechnology, optimal control, signal processing, network analysis, and dimensionality reduction may solve these problems. univariate statistical technique in neuroscience research fails to show component interactions and their effects. this study uses support vector machines, principal component and factor analysis, cluster analysis, multiple linear regression, and random forest regression. the discipline of connectomics studies brain connections at big and small scales. this shows how neuroinformatics accelerates progress. nif integrates neurological data, making database integration easy. data mining across many neuroscience data layers is also examined for pros and cons.
|
کلیدواژه
|
data mining،multivariate statistical analyses،neuroscience،therapeutic development،translational neuroscience
|
آدرس
|
, iran, , iran
|
پست الکترونیکی
|
zanjireh@eng.ikiu.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|