>
Fa   |   Ar   |   En
   acceleration of randomized kaczmarz method via the johnson–lindenstrauss lemma  
   
نویسنده aghaei khomami somayeh
منبع computational sciences and engineering - 2024 - دوره : 4 - شماره : 2 - صفحه:331 -349
چکیده    In this paper, we propose an accelerated variant of the randomized kaczmarz method for solving large-scale linear systems, including both standard and inequality-constrained systems. the key innovation lies in integrating the johnson–lindenstrauss (jl) lemma into the row-selection process, which allows high-dimensional rows to be projected onto lower-dimensional spaces while approximately preserving pairwise distances. this enables near-optimal row selection with reduced computational cost, improving both convergence rate and stability, particularly for ill-conditioned systems. furthermore, monte carlo techniques are employed to efficiently construct the projection matrices, enhancing the overall computational performance. numerical experiments demonstrate that the proposed method achieves faster convergence and higher accuracy compared to traditional randomized kaczmarz and other conventional techniques, making it highly suitable for large-scale problems in applied mathematics and engineering.
کلیدواژه randomized kaczmarz method ,dimensionality reduction ,johnson–lindenstrauss lemma ,monte carlo technique ,iterative algorithms
آدرس rasht metropolitan municipality, iran
پست الکترونیکی somayehaghaye@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved