>
Fa   |   Ar   |   En
   the first order nonlinear autoregressive model ‎ ‎with ornstein uhlenbeck processes driven by white ‎noise  
   
نویسنده nabati parisa
منبع journal of mathematics and modeling in finance - 2020 - دوره : 1 - شماره : 1 - صفحه:3 -10
چکیده    This paper presents a nonlinear autoregressive model with ‎ornstein ‎uhlenbeck processes innovation driven with white noise. ‎‎‎‎notations ‎and ‎preliminaries ‎are ‎presented ‎about ‎the ‎ornstein ‎uhlenbeck ‎processes ‎that ‎have ‎important ‎applications ‎in ‎finance. ‎the ‎parameter ‎estimation ‎for ‎these ‎processes ‎is ‎constructed ‎from ‎the ‎time ‎continuous ‎likelihood ‎function ‎that ‎leads ‎to ‎an ‎explicit ‎maximum ‎likelihood ‎estimator.‎ a semiparametric method is proposed to estimate the nonlinear autoregressive function using the conditional least square method for parametric estimation and the nonparametric kernel approach by using the nonparametric factor that is derived by a local l2-fitting criterion for the regression adjustment ‎estimation‎‎‎. then the ‎monte ‎carlo‎‎ numerical simulation studies are carried out to show the efficiency and accuracy of the present ‎work.‎ the ‎mean square error (‎mse) is a measure of the average squared deviation of the ‎estimated ‎function‎ values from the actual ones. the values of mse indicate ‎that ‎the ‎innovation ‎in ‎noise ‎structure ‎is ‎performed ‎well ‎in ‎comparison ‎with ‎the ‎existing ‎noise ‎in ‎the ‎nonlinear ‎autoregressive ‎models.‎‎‎‎
کلیدواژه autoregressive model; conditional nonlinear least squaresmethod; ornstein-uhlenbeck processes; semiparametric estimation.
آدرس urmia university of technology, faculty of science, iran
پست الکترونیکی p.nabati@uut.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved