>
Fa   |   Ar   |   En
   perfectness of the essential graph for modules over commutative rings  
   
نویسنده soheilnia fatemeh ,payrovi shiroyeh ,behtoei ali
منبع aut journal of mathematics and computing - 2025 - دوره : 6 - شماره : 2 - صفحه:163 -170
چکیده    Let r be a commutative ring and m be an r-module. the essential graph of m, denoted by eg(m) is a simple graph with vertex set z(m) ann(m) and two distinct vertices x, y ∈ z(m) ann(m) are adjacent if and only if annm(xy) is an essential submodule of m. in this paper, we investigate the dominating set, the clique and the chromatic number and the metric dimension of the essential graph for noetherian modules. let m be a noetherian r-module such that |minassr(m)| = n ≥ 2 and let eg(m) be a connected graph. we prove that eg(m) is a weakly prefect, that is, ω(eg(m)) = χ(eg(m)). furthermore, it is shown that dim(eg(m)) = |z(m)| − (| ann(m)| + 2n), whenever r(ann(m)) ̸= ann(m) and dim(eg(m)) = |z(m)| − (| ann(m)| + 2n − 2), whenever r(ann(m)) = ann(m)
کلیدواژه essential graph ,dominating set ,clique number ,chromatic number ,metric dimension
آدرس imam khomieini international university, faculty of science, department of pure mathematics, iran, imam khomieini international university, faculty of science, department of pure mathematics, iran, imam khomieini international university, faculty of science, department of pure mathematics, iran
پست الکترونیکی a.behtoei@sci.ikiu.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved