>
Fa   |   Ar   |   En
   rank inequality in homogeneous finsler geometry  
   
نویسنده xu ming
منبع aut journal of mathematics and computing - 2021 - دوره : 2 - شماره : 2 - صفحه:171 -184
چکیده    This is a survey on some recent progress in homogeneous finsler geometry. three topics are discussed, the classification of positively curved homogeneous finsler spaces, the geometric and topological properties of homogeneous finsler spaces satisfying k ≥ 0 and the (fp) condition, and the orbit number of prime closed geodesics in a compact homogeneous finsler manifold. these topics share the same similarity that the same rank inequality, i.e., rankg ≤ rankh + 1 for g/h with compact g and h, plays an important role. in this survey, we discuss in each topic how the rank inequality is proved, explain its importance, and summarize some relevant results.
کلیدواژه closed geodesic ,compact coset space ,homogeneous finsler metric ,positive curvature
آدرس capital normal university, school of mathematical sciences, china
پست الکترونیکی mgmgmgxu@163.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved