>
Fa   |   Ar   |   En
   weighted ricci curvature in riemann-finsler geometry  
   
نویسنده shen zhongmin
منبع aut journal of mathematics and computing - 2021 - دوره : 2 - شماره : 2 - صفحه:117 -136
چکیده    Ricci curvature is one of the important geometric quantities in riemann-finsler geometry. together with the s-curvature, one can define a weighted ricci curvature for a pair of finsler metric and a volume form on a manifold. one can build up a bridge from riemannian geometry to finsler geometry via geodesic fields. then one can estimate the laplacian of a distance function and the mean curvature of a metric sphere under a lower weighted ricci curvature by applying the results in the riemannian setting. these estimates also give rise to a volume comparison of bishop-gromov type for finsler metric measure manifolds.
کلیدواژه ricci curvature ,s-curvature ,mean curvature
آدرس indiana university-purdue university, department of mathematical sciences, usa
پست الکترونیکی zshen@math.iupui.edu
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved