>
Fa
  |  
Ar
  |  
En
روشی برای بهبود آزمون جهش پیشگویانه با در نظر گرفتن اثر داده های از دست رفته
نویسنده
رستمی طه ,جلیلی سعید
منبع
كنفراس فناوري اطلاعات و دانش (ikt2021) - 1400 - دوره : 12 - کنفراس فناوری اطلاعات و دانش (IKT2021) - کد همایش: 00210-94457 - صفحه:0 -0
چکیده
آزمون جهش روشی قدرتمند است که در آزمون نرمافزار برای فعالیتهای گوناگون از جمله راهنمایی برای تولید آزمون و ارزیابی کیفیت مجموعه آزمون استفاده میشود. با این وجود، هزینه زیاد آزمون جهش مقیاسپذیری آن را به طور جدی تهدید میکند. در همین راستا، آزمون جهش پیشگویانه به عنوان روشی برای کاهش هزینههای آزمون جهش پیشنهاد شده است که در آن هدف پیشبینی کردن کشف شدن یا کشف نشدن یک برنامه جهشیافته توسط مدلهای یادگیری ماشین است. اخیراً نشان داده شده است که کارهای قبلی آزمون جهشپیشگویانه تاثیر برنامه های جهشیافته کشف نشده را در نظر نگرفتند و وقتی پیشبینی مدلهای یادگیری ماشین قبلی محدود به چنین برنامههای جهشیافتهای شود auc به %61 کاهش پیدا میکند. در این پژوهش، علاوه بر تاثیر برنامههای جهشیافته کشف نشده، تاثیر دادههای از دست رفته نیز در نظر گرفته شده است در حالی که کارهای گذشته آن را نادیده گرفته بودند و روشی پیشنهاد شده است که دقت auc را از %61 به %72 بهبود داده است.
کلیدواژه
آزمون جهش، آزمون نرمافزار، امتیاز جهش، یادگیری ماشین
آدرس
A method for improving predictive mutation testing that considers the impacts of missing data
Authors
Copyright 2023
Islamic World Science Citation Center
All Rights Reserved