|
|
مساله استفان معکوس دو بعدی با استفاده از توابع پایه شعاعی
|
|
|
DOR
|
20.1001.2.9819097974.1398.4.1.8.3
|
نویسنده
|
حاجی علو زرنق اشرف ,امانی راد جمال ,ذبیحی فاطمه
|
منبع
|
كنفرانس فيزيك رياضي ايران - 1398 - دوره : 4 - چهارمین کنفرانس فیزیک ریاضی ایران - کد همایش: 98190-97974 - صفحه:0 -0
|
چکیده
|
برای حل مساله استفان معکوس دو بعدی تک فازی، یک روش بدون شبکه مبتنی بر تکنیک درون یابی توابع پایه شعاعی مکان-زمان ارائه کرده ایم. توزیع دما در یک مساله مرز متحرک و برخی از شرایط مرزی دیریکله و نیومن روی مرزهای ثابت قلمرو را تقریب زده ایم. بدین صورت که ابتدا با به کارگیری انتقال لاندا به یک دامنه مستطیلی رسیده و سپس از روش درون یابی توابع پایه شعاعی مکان-زمان استفاده کرده و دستگاه خطی از معادلات جبری را با روش فاکتورگیری lu حل می کنیم. آزمایشات عددی نشان می دهند که روش ارائه شده آسان و کارآمد است و نتایج عددی پایدار و بسیار دقیقی تولید می کند.
|
کلیدواژه
|
توابع پایه شعاعی مکان-زمان ,مرز متحرک ,مساله استفان معکوس ,روش بدون شبکه
|
آدرس
|
دانشگاه کاشان. university of kashan, دانشگاه شهید بهشتی. shahid beheshti university, دانشگاه کاشان. university of kashan
|
|
|
|
|
|
|
|
|
|
|
Numerical solution of a two-dimensional inverse Stefan problem via radial basis functions
|
|
|
Authors
|
Haji Olov Ashraf ,Amani Rad Jamal ,Zabihi Fatemeh
|
Abstract
|
We present a meshless method based on the space-time radial basis functions interpolation technique for solving the inverse one-phase two-dimensional Stefan problem. We calculate the temperature distribution in a moving boundary problem and approximate some Dirichlet and Neumann boundary conditions on the fixed boundaries of the domain. By applying the Landau’s transformation, we get a rectangular domain and then use the space-time radial basis functions interpolation technique to solve a linear system of algebraic equations which is solved by using the LU factorization method. Numerical experiments show that the presented method is easy to program, efficient and produces very accurate and stable numerical results.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|