>
Fa   |   Ar   |   En
   ارتقا حریم خصوصی ترافیک شبکه در برابر حمله ی دسته بندی به کمک یادگیری خصمانه  
   
DOR 20.1001.2.0620044038.2020.17.1.4.6
نویسنده کریمی محمدرضا ,جلیلی رسول
منبع كنفرانس بين المللي انجمن رمز ايران - 2020 - دوره : 17 - کنفرانس بین الملی انجمن رمز ایران - کد همایش: 06200-44038 - صفحه:22 -29
چکیده    در چند سال اخیر بطور گسترده از معماری های مختلف شبکه های عصبی عمیق در ادبیات پژوهش های دسته بندی ترافیک و انگشت نگاری وب سایت استفاده شده است. دسته بندی های یاد شده بر روی ویژگی های آماری ترافیک مانند طول بسته ها و فاصله ی زمانی بین بسته هاصورت می پذیرد. ارتقا حریم خصوصی ترافیک شبکه در برابر حملات دسته بندی با الگوریتم هایی صورت می پذیرد که ترکیبی از افزایش طول (لایه گذاری) و شکستن بسته ها و اضافه کردن تاخیر در ارسال بسته را انجام می دهند. در این پژوهش به جای طراحی چنین الگوریتم هایی، با استفاده از روش های سنجش و ارزیابی مقاومت شبکه های عصبی موسوم به الگوریتم های تولید نمونه ی خصمانه با اعمال حداقل سربار اقدام به لایه گذاری بسته های جریان ترافیک شده است. یک دسته بند شبکه ی عصبی عمیق همگشتی را قبل و بعد از اعمال دفاع بر روی ترافیک، به کمک پنج الگوریتم تولید نمونه ی خصمانه، کارلینی-ونگر، جِی.اس.ام.ای، اف.جی.اس.ام، دیپ فول و پریشیدگی سراسری، ارزیابی می کنیم. هر یک از الگوریتم ها با اضافه کردن میزان سربار متفاوت، از دقت و مثبت کاذب دسته بندی شبکه عصبی یاد شده می کاهند.
کلیدواژه دسته بندی ترافیک ,مبهم نگاری ترافیک ,یادگیری عمیق ,یادگیری ماشین ,شبکه ی عصبی ,شبکه ی عصبی همگشتی
آدرس دانشگاه صنعتی شریف, دانشکده مهندسی کامپیوتر, ایران, دانشگاه صنعتی شریف, دانشکده مهندسی کامپیوتر, ایران
پست الکترونیکی jalili@sharif.edu
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved