>
Fa   |   Ar   |   En
   a framework for dry waste detection based on a deep convolutional neural network  
   
DOR 20.1001.2.9920081484.1399.1.1.5.9
نویسنده ataei atefeh ,kazemitabar javad ,najafi mohsen
منبع كنفرانس ملي تكنولوژي در مهندسي برق و كامپيوتر - 1399 - دوره : 5 - پنجمین کنفرانس ملی تکنولوژی در مهندسی برق و کامپیوتر - کد همایش: 99200-81484 - صفحه:1 -4
چکیده    Due to lack of proper regulations in many areas of the world, consumers are not mandated to sorting waste at the source. moreover, human sorting often suffers from low accuracy. in the intelligent detection system, it is attempted to break down a variety of household wastes including plastic bottles, glass, metals, paper bags, compact plastics, paper and disposable containers. in this paper, a real waste image system is investigated using the deep convolutional neural network and a remarkable accuracy of 92.76% achieved.
کلیدواژه image processing; sorting; dry residue; deep learning
آدرس babol noshirvani university of technology, babol noshirvani university of technology, arak university of technology
پست الکترونیکی nadjafi@arakut.ac.ir
 
   ساز و کاری برای جداسازی زباله خشک مبتنی بر یادگیری عمیق  
   
Authors Ataei Atefeh ,Kazemitabar Javad ,Najafi Mohsen
Abstract   
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved