>
Fa   |   Ar   |   En
   on $e$-super $(a, d)$-edge antimagic total labeling of total graphs of paths and cycles  
   
نویسنده saibulla a. ,pushpam p. roushini
منبع communications in combinatorics and optimization - 2025 - دوره : 10 - شماره : 4 - صفحه:787 -802
چکیده    A $(p, q)$-graph $g$ is $(a, d)$-edge antimagic total if there exists a bijection $f$ from $v(g) cup e(g)$ to ${1, 2, dots, p+q}$ such that for each edge $uv in e(g)$, the edge weight $lambda(uv) = f(u) + f(uv) + f(v)$ forms an arithmetic progression with first term $a > 0$ and common difference $d geq 0$. an $(a, d)$-edge antimagic total labeling in which the vertex labels are $1, 2, dots, p$ and edge labels are $p+1, p+2, dots, p+q$ is called a {it super} $(a, d)$-{it edge antimagic total labeling}. another variant of $(a, d)$-edge antimagic total labeling called as e-super $(a, d)$-edge antimagic total labeling in which the edge labels are $1, 2, dots, q$ and vertex labels are $q+1, q+2, dots, q+p$. in this paper, we investigate the  existence of e-super $(a, d)$-edge antimagic total labeling for total graphs of paths, copies of cycles and disjoint union of cycles.
کلیدواژه graph labeling ,magic labeling ,antimagic labeling
آدرس b.s. abdur rahman crescent institute of science and technology, department of mathematics and actuarial science, india, d.b. jain college, department of mathematic, india
پست الکترونیکی roushinip@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved