a note on the re-defined third zagreb index of trees
|
|
|
|
|
|
|
|
نویسنده
|
dehgardi nasrin
|
|
منبع
|
communications in combinatorics and optimization - 2025 - دوره : 10 - شماره : 3 - صفحه:539 -545
|
|
چکیده
|
For a graph $gamma$, the re-defined third zagreb index is defined as $$rezg_3(gamma)=sum_{abin e(gamma)}deg_gamma(a) deg_gamma(b)big(deg_gamma(a)+deg_gamma(b)big),$$where $deg_gamma(a)$ is the degree of vertex $a$. we prove for any tree $t$ with $n$ vertices and maximum degree $delta$, $rezg_3(t)geq16n+delta^3+2delta^2-13delta-26$ when $delta< n-1$ and $rezg_3(t)=ndelta^2+ndelta-delta^2-delta$ when $delta=n-1$. also we determine the corresponding extremal trees.
|
|
کلیدواژه
|
zagreb indices، re-defined third zagreb index، trees
|
|
آدرس
|
sirjan university of technology, department of mathematics and computer science, iran
|
|
پست الکترونیکی
|
ndehgardi@gmail.com
|
|
|
|
|
|
|