>
Fa   |   Ar   |   En
   skew cyclic codes over $mathbb{z}_4+vmathbb{z}_4$ with derivation: structural properties and computational results  
   
نویسنده suprijanto djoko ,tang hopein
منبع communications in combinatorics and optimization - 2025 - دوره : 10 - شماره : 3 - صفحه:497 -517
چکیده    In this work, we study a class of skew cyclic codes over the ring $r:=mathbb{z}_4+vmathbb{z}_4,$ where $v^2=v,$ with an automorphism $theta$ and a derivation $delta_theta,$ namely codes as modules over a skew polynomial ring $r[x;theta,delta_{theta}],$ whose multiplication is defined using an automorphism $theta$ and a derivation $delta_{theta}.$ we investigate the structures of a skew polynomial ring $r[x;theta,delta_{theta}].$ we define $delta_{theta}$-cyclic codes as a generalization of the notion of cyclic codes. the properties of $delta_{theta}$-cyclic codes as well as dual $delta_{theta}$-cyclic codes are derived. as an application, some new linear codes over $mathbb{z}_4$ with good parameters are obtained by plotkin sum construction, also via a gray map as well as residue and torsion codes of these codes.
کلیدواژه cyclic codes ,quasi-cyclic codes ,skew polynomial ring ,skew cyclic codes ,derivation
آدرس institut teknologi bandung, faculty of mathematics and natural sciences, combinatorial mathematics research group, indonesia, institut teknologi bandung, faculty of mathematics and natural sciences, combinatorial mathematics research group, indonesia
پست الکترونیکی hopein.tang@unsw.edu.au
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved