>
Fa   |   Ar   |   En
   monophonic eccentric domination in graphs  
   
نویسنده titus p. ,ajitha fancy j.
منبع communications in combinatorics and optimization - 2024 - دوره : 9 - شماره : 4 - صفحه:625 -633
چکیده    For any two vertices $u$ and $v$ in a connected graph $g,$ the monophonic distance $d_m(u,v)$ from $u$ to $v$ is defined as the length of a longest $u-v$ monophonic path in $g$. the monophonic eccentricity $e_m(v)$ of a vertex $v$ in $g$ is the maximum monophonic distance from $v$ to a vertex of $g$.  a vertex $v$ in $g$ is a monophonic eccentric vertex of a vertex $u$ in $g$ if $e_m(u) = d_m(u,v)$. a set $s subseteq v$  is a  monophonic eccentric  dominating $set$ if every vertex in $v-s$ has a monophonic eccentric vertex in $s$. the monophonic eccentric  domination number $gamma_{me}(g)$ is the  cardinality of a minimum monophonic eccentric  dominating set of $g$. we investigate some properties of monophonic eccentric  dominating sets. also, we determine the bounds of monophonic eccentric  domination number and find the same for some standard graphs.
کلیدواژه monophonic path ,monophonic distance ,monophonic eccentric vertex ,monophonic eccentric dominating set ,monophonic eccentric domination number
آدرس anna university, university college of engineering nagercoil, department of mathematics, india, scott christian college (autonomous), department of mathematics, india
پست الکترونیکی ajithafancy@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved