>
Fa   |   Ar   |   En
   signless laplacian eigenvalues of the zero divisor graph associated to finite commutative ring zpm1 qm2  
   
نویسنده pirzada shariefuddin ,rather bilal a. ,shaban rezwan ul ,chishti t. a.
منبع communications in combinatorics and optimization - 2023 - دوره : 8 - شماره : 3 - صفحه:561 -574
چکیده    For a commutative ring r with identity 1 6= 0, let the set z(r) denote the set of zero-divisors and let z∗(r) = z(r) {0} be the set of non-zero zero divisors of r. the zero divisor graph of r, denoted by γ(r), is a simple graph whose vertex set is z∗(r) and two vertices u, v ∈ z∗(r) are adjacent if and only if uv = vu = 0. in this article, we find the signless laplacian spectrum of the zero divisor graphs γ(zn) for n = pm1 qm2 , where p < q are primes and m1, m2 are positive integers.
کلیدواژه signless laplacian matrix; zero divisor graph ,finite commutative ring ,eulers’s totient function
آدرس university of kashmir, department of mathematics, india, university of kashmir, department of mathematics, india, university of kashmir, department of mathematics, india, university of kashmir, department of mathematics, india
پست الکترونیکی tachishti@uok.edu.in
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved