|
|
a characterization relating domination, semitotal domination and total roman domination in trees
|
|
|
|
|
نویسنده
|
martinez abel tarragona ,arias alondra martinez ,castillo maikel menendez
|
منبع
|
communications in combinatorics and optimization - 2021 - دوره : 6 - شماره : 2 - صفحه:197 -209
|
چکیده
|
A total roman dominating function on a graph g is a function f:v(g)→{0,1,2} such that for every vertex v∈v (g) with f(v)=0 there exists a vertex u∈v(g) adjacent to v with f(u)=2, and the subgraph induced by the set {x∈v(g):f(x)≥1} has no isolated vertices. the total roman domination number of g, denoted γtr(g), is the minimum weight ω(f)=∑v∈v(g)f(v) among all total roman dominating functions f on g. it is known that γtr(g)≥γt2(g)+γ(g) for any graph g with neither isolated vertex nor components isomorphic to k2, where γt2(g) and γ(g) represent the semitotal domination number and the classical domination number, respectively. in this paper we give a constructive characterization of the trees that satisfy the equality above.
|
کلیدواژه
|
total roman domination ,semitotal domination ,domination ,trees
|
آدرس
|
universitat rovira i virgili, departament d'enginyeria informatica i matematiques, spain, universidad de oriente, departamento de matematica, cuba, universidad de oriente, departamento de matematica, cuba
|
پست الکترونیکی
|
maikelm@uo.edu.cu
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|