>
Fa   |   Ar   |   En
   an integration of conventional rock typing methods and fuzzy c-means clustering algorithm: a case study  
   
DOR 20.1001.2.2187500211.1400.3.1.96.1
نویسنده khosravi mohammad hosein ,kheirollahi mahdi
منبع كنفرانس بين المللي فناوريهاي جديد در صنايع نفت، گاز و پتروشيمي - 1400 - دوره : 3 - سومین کنفرانس بین المللی فناوری های جدید در صنایع نفت، گاز و پتروشیمی - کد همایش: 2187500211
چکیده    Determination of rock types in hydrocarbon reservoirs (whether carbonate or clastic) is very important. therefore, various methods for identifying rock types have been introduced and developed in recent years. in this study, we have applied some conventional rock typing methods in combination with a clustering machine learning algorithm in order to optimize the number of clusters and eventually group input data in accurate rock types. the results show that flow zone indicator (fzi) method integrated with the fuzzy c-means (fcm) algorithm was the best approach for detecting rock types with the range of correlation coefficient (r2) from 0.81 to 0.87.
کلیدواژه rock types ,clustering machine learning algorithm ,flow zone indicator ,fuzzy c-means algorithm
آدرس university of tehran, iran, university of tehran, iran
پست الکترونیکی m.kheirollahi97@ut.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved