>
Fa   |   Ar   |   En
   machine learning models for predicting characteristics of pvam membranes for post-combustion co2 capture application  
   
DOR 20.1001.2.2187500211.1400.3.1.79.4
نویسنده mansourpour zahra ,farajnezhadi amirreza ,khodaparast mohammad
منبع كنفرانس بين المللي فناوريهاي جديد در صنايع نفت، گاز و پتروشيمي - 1400 - دوره : 3 - سومین کنفرانس بین المللی فناوری های جدید در صنایع نفت، گاز و پتروشیمی - کد همایش: 2187500211
چکیده    Facilitated transport membranes fabricated by polyvinylamine show great potential to compete with convenient carbon capture technologies in a post-combustion co2/n2 separation, with lower energy consumption and zero toxicity. precise mathematical models are needed to predict membrane characteristics for designing suitable membrane equipment and optimizing process configuration. two main features of a membrane are the permeance of co2 gas and co2/n2 selectivity that shows the overall performance of each membrane by considering the solution-diffusion model. two known machine learning algorithms were employed to predict the permeance and selectivity of a recently developed membrane based on its four major parameters. both mlp-ann and svm functions had great potential to fit experimental data, while the mlp-ann method works better for permeance (r2 equal to 0.975) and the svm method fits selectivity better (r2 equal to 0.948).
کلیدواژه co2 capture ,polyvinylamine membrane ,machine learning ,support vector machine ,artificial neural network
آدرس university of tehran, iran, university of tehran, iran, university of tehran, iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved