>
Fa   |   Ar   |   En
   card fraud detection models using data mining techniques and patterns  
   
DOR 20.1001.2.9819137054.1398.1.1.58.8
نویسنده - - ,- -
منبع كنفرانس ملي مدل‌سازي رياضي و روش‌هاي محاسباتي در علوم و مهندسي - 1398 - دوره : 1 - اولین کنفرانس ملی مدل‌سازی ریاضی و روش‌های محاسباتی در علوم و مهندسی - کد همایش: 98191-37054 - صفحه:1 -19
چکیده    Due to the fast development of e-commerce industry and electronic payment ecosystem, anti-fraud systems have a market value. because of the dissimilar format of the data (fraud and non-fraud cases), the detection of fraudulent transactions is difficult to achieve. this paper intends to survey on existing fraud detection models, analyses and compares various popular classifier algorithms that have been most commonly using in detecting fraud behavior. it focuses on the benchmark used to assess the classification performance and rank those algorithms. mostly use data mining techniques for credit card fraud detection. the detection techniques is mostly based on the methods like decision tree, clustering techniques, neural networks and hidden markov model, these are evolved in detecting the various credit card fraudulent transactions. this paper presents the survey of those techniques and identifies the best fraud cases.
کلیدواژه machine learning ,data mining ,fraud ,data mining ,models ,computational efficiency
آدرس arel university istanbul turkiye, iran, , iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved