>
Fa   |   Ar   |   En
   تشخیص و طبقه بندی بیماری پارکینسون از طریق سیگنال گفتار با استفاده از تکنیک های پردازش سیگنال: یک مرور سیستماتیک  
   
DOR 20.1001.2.9820090972.1399.1.1.48.2
نویسنده زندی علیرضا ,عادلی محمد
منبع كنفرانس ملي پژوهش هاي نوين در مهندسي پزشكي - 1399 - دوره : 1 - اولین دوره کنفرانس ملی پژوهش های نوین در مهندسی پزشکی - کد همایش: 98200-90972
چکیده    زمینه و هدف: بیماران مبتلا به پارکینسون معمولاً از اختلالات مربوط به صوت و حنجره مانند اختلال تکلّم، کاهش شدت گفتار و هجی کردن کلمات رنج می برند. این علائم و نشانه ها با پیشرفت روند بیماری افزایش می یابند. استفاده از روش های پردازش سیگنال به منظور تشخیص این بیماری از سیگنال گفتار به عنوان روشی کم هزینه و غیرتهاجمی در چندین مطالعه بین المللی حائز اهمیت بوده است. لذا هدف از مطالعه حاضر بررسی عملکرد الگوریتم های مختلف جهت تشخیص و طبقه بندی بیماری پارکینسون از طریق سیگنال گفتار به روش مرور سیستماتیک می باشد. روش جستجو: پایگاه های اطلاعاتی و موتورهای جستجوی scopus, science direct, ieee, embase, cochrane library, google scholar, and sid با استفاده از کلیدواژه های parkinson’s disease, speech signal, classfication, and diagnosis و معادل فارسی آن ها بدون در نظرگرفتن محدودیت زمانی مورد جستجو قرار گرفتند. جهت جستجوی گسترده تر لیست منابع مقالات مرتبط نیز بصورت دستی جستجو شد. مقالات بدست آمده مطابق چک لیست prisma و با مشورت دو نویسنده در مورد اختلافات بصورت مستقل مورد بررسی قرار گرفت و اطلاعات دقت الگوریتم ها در تشخیص بیماری پارکینسون استخراج گردید. یافته‌ها: پس از انجام جستجوی اولیه 347 مقاله مورد بازیابی قرار گرفت. در مجموع و بدون درنظرگرفتن مقالات تکراری و غیرمرتبط 14 مقاله انتخاب شدند که این مقالات در بازه زمانی 2012 تا 2019 منتشر شده بودند. به ترتیب دقت شبکه های عصبی جلورونده %60، خودسازمان ده %52/81 و پرسپترون چند لایه %30/92، محاسبه شده بودند. همچنین دقت طبقه بندی کننده ها و تکنیک های یادگیری معیار(metric) %79/67، k تا نزدیک ترین همسایه %85، رگرسیون لجستیک %5/85، آدابوست m1 %20/88، درخت تصمیم گیری (%61/84) و (جنگل تصادفی %03/87) و (j48 %74/89)، بیز ساده %28/91، ترکیب smote با جنگل تصادفی %89/94، و ماشین بردار پشتیبان (تابع کرنل خطی %83) و (تابع کرنل عمومی %85) و (مدل حداقل مربعات %86/87) و (بهینه سازی متوالی کمینه %91.28) و (تابع کرنل پایه شعاعی %93/95)، محاسبه شده بودند. برخی الگوریتم ها در بیش از یک مقاله با ویژگی های متفاوت استفاده شده بودند که در این مطالعه بالاترین دقت ذکر گردید. نتیجه‌گیری:در 8 مقاله از 14 مقاله مورد مطالعه، ماشین بردار پشتیبان به طور مشترک برای طبقه بندی استفاده شده است همچنین ویژگی های استخراج شده از سیگنال گفتار در 14 مقاله متفاوت بوده است. باتوجه به اینکه ماشین بردار پشتیبان در 5 مقاله از 8 مقاله بیشترین دقت را در میان تمام الگوریتم ها با استخراج ویژگی های متفاوت داشته است؛ به نظر می رسد ممکن است با ترکیب ماشین بردار پشتیبان با تابع کرنل پایه شعاعی با بالاترین دقت %93/95 با دیگر الگوریتم ها ضمن بهینه کردن سرعت آن بتوان بصورت بلادرنگ تشخیص بیماری پارکینسون را انجام داد.
کلیدواژه بیماری پارکینسون ,سیگنال گفتار ,طبقه بندی کننده ,ماشین بردار پشتیبان
آدرس دانشگاه آزاد اسلامی واحد دزفول, ایران, دانشگاه آزاد اسلامی واحد دزفول, ایران
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved