>
Fa   |   Ar   |   En
   an improved genetic algorithm for multidimensional optimizationof precedence-constrained production planning and scheduling  
   
نویسنده dao son duy ,abhary kazem ,marian romeo
منبع journal of industrial engineering international - 2017 - دوره : 13 - شماره : 2 - صفحه:143 -159
چکیده    Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. this class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. it is a combinatorial, np-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. in this paper, the further development of genetic algorithm (ga) for this integrated optimization is presented. because of the dynamic nature of the problem, the size of its solution is variable. to deal with this variability and find an optimal solution to the problem, ga with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. with the proposed structure, the proposed ga is able to “learn” from its experience. robustness of the proposed ga is demonstrated by a complex numerical example in which performance of the proposed ga is compared with those of three commercial optimization solvers.
کلیدواژه genetic algorithm ,optimization ,precedence constraint ,integration of planning and scheduling ,variable-length chromosome
آدرس university of south australia,mawson lakes campus, school of engineering, australia, university of south australia, mawson lakes campus, school of engineering, australia, university of south australia, mawson lakes campus, school of engineering, australia
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved