>
Fa   |   Ar   |   En
   using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators  
   
نویسنده mousavi hosein ,nazemi ali ,hafezalkotob ashkan
منبع journal of industrial engineering international - 2015 - دوره : 11 - شماره : 1 - صفحه:59 -72
چکیده    With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. market design is challenged by multiple objectives that need to be satisfied. the solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous optimization of multiple parameters. the problem is formulated analytically using the nash equilibrium concept for games composed of large numbers of players having discrete and large strategy spaces. the solution methodology is based on a characterization of nash equilibrium in terms of minima of a function and relies on a metaheuristic optimization approach to find these minima. this paper presents some metaheuristic algorithms to simulate how generators bid in the spot electricity market viewpoint of their profit maximization according to the other generators’ strategies, such as genetic algorithm (ga), simulated annealing (sa) and hybrid simulated annealing genetic algorithm (hsaga) and compares their results. as both ga and sa are generic search methods, hsaga is also a generic search method. the model based on the actual data is implemented in a peak hour of tehran’s wholesale spot market in 2012. the results of the simulations show that ga outperforms sa and hsaga on computing time, number of function evaluation and computing stability, as well as the results of calculated nash equilibriums by ga are less various and different from each other than the other algorithms.
کلیدواژه genetic algorithm (ga) ,simulated annealing (sa) ,hybrid simulated annealing genetic algorithm (hsaga) ,nash equilibrium ,bidding strategy
آدرس university of economic sciences, economic college, department of socioeconomic systems engineering, ایران, university of economic sciences, economic college, department of socioeconomic systems engineering, ایران, islamic azad university, south tehran branch, industrial engineering college, department of industrial engineering, ایران
پست الکترونیکی a_hafez@azad.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved