>
Fa   |   Ar   |   En
   Uncovering highly obfuscated plagiarism cases using fuzzy semantic-based similarity model  
   
نویسنده Alzahrani Salha M. ,Salim Naomie ,Palade Vasile
منبع journal of king saud university - computer and information sciences - 2015 - دوره : 27 - شماره : 3 - صفحه:248 -268
چکیده    Highly obfuscated plagiarism cases contain unseen and obfuscated texts, which pose difficulties when using existing plagiarism detection methods. a fuzzy semantic-based similarity model for uncovering obfuscated plagiarism is presented and compared with five state-of-the-art baselines. semantic relatedness between words is studied based on the part-of-speech (pos) tags and wordnet-based similarity measures. fuzzy-based rules are introduced to assess the semantic distance between source and suspicious texts of short lengths, which implement the semantic relatedness between words as a membership function to a fuzzy set. in order to minimize the number of false positives and false negatives, a learning method that combines a permission threshold and a variation threshold is used to decide true plagiarism cases. the proposed model and the baselines are evaluated on 99,033 ground-truth annotated cases extracted from different datasets, including 11,621 (11.7%) handmade paraphrases, 54,815 (55.4%) artificial plagiarism cases, and 32,578 (32.9%) plagiarism-free cases. we conduct extensive experimental verifications, including the study of the effects of different segmentations schemes and parameter settings. results are assessed using precision, recall, f-measure and granularity on stratified 10-fold cross-validation data. the statistical analysis using paired t-tests shows that the proposed approach is statistically significant in comparison with the baselines, which demonstrates the competence of fuzzy semantic-based model to detect plagiarism cases beyond the literal plagiarism. additionally, the analysis of variance (anova) statistical test shows the effectiveness of different segmentation schemes used with the proposed approach
کلیدواژه Feature extraction;Fuzzy similarity;Obfuscation;Plagiarism detection;Semantic similarity
آدرس Taif University, College of Computers and Information Technology (CIT), Saudi Arabia, University of Technology Malaysia, Faculty of Computer Science and Information Systems, Malaysia, University of Oxford, Department of Computer Science, UK
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved