>
Fa   |   Ar   |   En
   طراحی مسیر حرکت و کنترل یکپارچه بر اساس مدل دوچرخه غیرخطی خودرو برای تعویض خط خودکارِ سرعت بالا  
   
نویسنده سازگار هادی ,آزادی شهرام ,کاظمی رضا
منبع مهندسي مكانيك مدرس - 1397 - دوره : 18 - شماره : 2 - صفحه:103 -114
چکیده    هدف این پژوهش توسعه یک سیستم کمک راننده پیشرفته برای هدایت یکپارچه طولی-عرضی خودرو در مانورهای تعویض خطِ سرعت بالا می باشد. عملکرد سیستم به این صورت است که در مرحله اول با در نظر گرفتن موقعیت خودرو هدف، محدوده سرعت مجاز جاده و محدوده شتاب طولی قابل ارائه توسط خودرو، چندین مسیر حرکت با شتاب های مختلف تولید می شوند. در ادامه با لحاظ نمودن دینامیک خودرو و دینامیک تایر، از میان مسیرهای تولید شده، مسیر مناسب انتخاب می گردد. بنابراین مسیر حرکت انتخابی، یک مسیر عاری از برخورد و قابل پیمایش خواهد بود. نظر به این که در روش پیشنهادی، محاسبات طراحی مسیر حرکت به صورت جبری انجام می شود، هزینه محاسباتی آن ناچیز بوده که از جنبه پیاده سازی عملی بسیار ارزشمند می باشد. در گام بعد با استفاده از یک کنترل کننده یکپارچه طولی-عرضی، ورودی های کنترلی محاسبه و به عملگرهای ترمز/گاز و فرمان ارسال می گردند. برای کنترل یکپارچه از تکنیک مود لغزشی استفاده شده است. لازم به ذکر است که هم در بحث طراحی مسیر حرکت و هم در بحث طراحی کنترل کننده یکپارچه، دینامیک غیر خطی تایر در نظر گرفته شده است. نتایج شبیه سازی های انجام شده نشان می دهند که الگوریتم هدایت یکپارچه طولی-عرضی هم در حوزه طراحی مسیر حرکت و هم و در حوزه کنترل یکپارچه به خوبی عمل نموده است.
کلیدواژه سیستم پیشرفته کمک راننده، رانندگی با سرعت بالا، طراحی مسیر حرکت، کنترل یکپارچه طولی-عرضی، مدل دوچرخه غیر خطی
آدرس دانشگاه صنعتی خواجه نصیرالدین طوسی, ایران, دانشگاه صنعتی خواجه نصیرالدین طوسی, ایران, دانشگاه صنعتی خواجه نصیرالدین طوسی, ایران
 
   Trajectory planning and integrated control with the Nonlinear Bicycle Model for high speed autonomous lane change  
   
Authors Sazgar Hadi ,Azadi Shahram ,Kazemi Reza
Abstract    The purpose of this research is to develop an advanced driver assistance system (ADAS) for the integrated longitudinal and lateral guidance of vehicles in high speed lane change maneuver. At the first step, the ADAS by considering the target vehicle position, the speed limit of the road and the available range of longitudinal acceleration produced several trajectories with different acceleration. Then, by considering vehicle and tire dynamics, the optimal trajectory is selected. Therefore, the chosen trajectory is collision free and feasible. Because the trajectory planning is carried out algebraically, its computational cost is low. This feature is very valuable in the experimental implementation. In the next step, using a combined longitudinallateral controller, the control inputs are calculated and transmitted to the brake/gas and steering actuators. The integrated controller design is based on sliding mode technique. Trajectory planning and controller design is based on a nonlinear tire model. Simulation results are presented and the results show the effectiveness of the integrated longitudinal and lateral guidance system.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved