|
|
تهیه نقشه کاربری اراضی شهر سبزوار با استفاده از روشهای حداکثر احتمال و شبکه عصبی مصنوعی پرسپترون چند لایه
|
|
|
|
|
نویسنده
|
اکبری الهه ,ابراهیمی مجید ,امیر احمدی ابوالقاسم
|
منبع
|
آمايش محيط - 1392 - دوره : 6 - شماره : 23 - صفحه:127 -148
|
چکیده
|
از جمله عوامل مهم در برنامهریزی و مدیریت شهری، به ویژه در راستای نیل به توسعهی پایدار در نواحی شهری و استفاده بهینه از سرزمین، اطلاع بهنگام از وضعیّت پوشش اراضی برای این مناطق است. دادههای سنجش از دور به جهت ارایهی اطلاعات به هنگام و رقومی، تنوع اشکال و امکان پردازش پتانسیل بالایی برای تهیهی نقشههای به روز کاربری اراضی شهری دارند. در این تحقیق با استفاده از تصویر ماهوارهای landsat/etm+ و دو الگوریتم طبقهبندی نظارت شده شامل حداکثر احتمال و شبکه عصبی مصنوعی، نقشه کاربری اراضی تهیه و با یکدیگر مقایسه گردید. در طبقهبندی با استفاده از الگوریتم شبکه عصبی از یک شبکه پرسپترون با یک لایه پنهان و 7 نرون ورودی، 9 نرون میانی و 4 نرون خروجی استفاده شده است که تعداد نرونهای ورودی همان تعداد باندهای تصویر ماهوارهای لندست و تعداد نرونهای خروجی همان تعداد کلاسهای نقشه کاربری اراضی میباشد. در نهایت نقشه پوشش اراضی منطقه به چهار طبقهی مناطق مسکونی، اراضی بایر، پوشش گیاهی و جادّه طبقهبندی شد. برای ارزیابی صحّت نتایج طبقهبندی، برداشتهای زمینی با استفاده از gps انجام گرفت. نتایج حاصل از ارزیابی دقت این دو روش با استفاده از صحت کلی و ضریب کاپا نشان داده است که الگوریتم شبکه عصبی پرسپترون با دقت کلی 24/98 و ضریب کاپای 9703/0 نسبت به الگوریتم حداکثر احتمال با دقت کلی 23/94 و ضریب کاپای 9034/0 از دقت بیش تری برخوردار است. همچنین در این تحقیق ارزیابی شد که روش طبقهبندی شبکهی عصبی پرسپترون چند لایه، نسبت به روش حداکثر احتمال، از توان تفکیک و قابلیت بیش تری برای تهیهی نقشه پوشش اراضی در مناطق شهری برخوردار میباشد.
|
کلیدواژه
|
کاربری اراضی شهری ,تصویر ماهوارهای ,سبزوار ,شبکه عصبی پرسپترون چند لایه ,ارزیابی دقت
|
آدرس
|
دانشگاه حکیم سبزواری, ایران, دانشگاه حکیم سبزواری, ایران, دانشگاه حکیم سبزواری, ایران
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|