>
Fa   |   Ar   |   En
   پیش‌بینی خصوصیات رئولوژیکی بنیادی خمیر با استفاده از شبکه عصبی الگوریتم ژنتیک  
   
نویسنده عباسی هاجر ,محمدی فر محمدامین
منبع علوم تغذيه و صنايع غذايي ايران - 1394 - دوره : 10 - شماره : 3 - صفحه:67 -77
چکیده    سابقه و هدف: خمیر محصول میانی خطوط تولید صنایع نانوایی است که ویژگی‌های رئولوژیکی آن نمایانگر خصوصیات فیزیکوشیمیایی مواد اولیه و موثر بر ویژگی‌های کیفی فرآورده نهایی است. با توجه به کارایی بالای شبکه‌های عصبی مصنوعی در آموزش‌پذیری و پردازش موازی داده‌ها با روابط غیر خطی، هدف از این پژوهش تهیۀ مدل‌هایی مناسب به منظور پیش‌بینی خصوصیات رئولوژیکی خمیر با توجه به ویژگی‌های فیزیکوشیمیایی آرد است.مواد و روشها: طیف وسیعی از آردهای تهیه شده در کارخانه‌های مختلف کشور جمع‌آوری و هفت ویژگی فیزیکوشیمیایی آنها مورد ارزیابی قرار گرفت. آزمون‌های نوسانی روبش کرنش و روبش فرکانس بر خمیر حاصل از نمونه‌ها انجام و دو پارامتر مهم حاصل از آنها به منظور مدل‌سازی انتخاب شدند. پس از آموزش شبکه‌‌ها و تعیین پارامترهای آنها با استفاده از الگوریتم بهینه‌ساز ژنتیک و آزمودن هر شبکه، بررسی حساسیت پارامترهای خروجی به فاکتورهای ورودی شبکه صورت گرفت.یافتهها: شبکه‌های طراحی شده از انواع پرسپترون چهار لایه ای هستند که اولی با حذف دو پارامتر گلوتن مرطوب و اندیس ابعاد ذرات آرد، دارای 5 نرون در لایۀ ورودی و 15 نرون در لایه‌های پنهان اول و دوم جهت پیش‌بینی عرض از مبدا و دومی با 7 نرون لایه ورودی، 24 نرون در لایۀ پنهان اول و 17 نرون در لایۀ پنهان دوم جهت پیش‌بینی شیب مدل برازش یافته بر روبش فرکانس مورد استفاده قرار گرفت. با استفاده از شبکه‌های گسترش یافته، پیش‌بینی خصوصیات رئولوژیکی خمیر با ضریب همبستگی بیش از 97% صورت گرفت. اندیس گلوتن و عدد زلنی به عنوان موثرترین پارامترها بر تغییر ویژگی‌های رئولوژیکی خمیر شناسایی شدند.نتیجه گیری: شبکه‌های عصبی مصنوعی الگوریتم ژنتیک ابزار توانمندی در پیش‌بینی خصوصیات رئولوژی خمیر هستند. آزمون حساسیت شبکه بهینه به‌خوبی اهمیت پیش‌بینی کنندگی ویژگی‌های فیزیکوشیمیایی آرد بر تغییرات خصوصیات رئولوژیکی بنیادی خمیررا نشان می‌دهد.واژگان کلیدی: شبکه عصبی مصنوعی، الگوریتم ژنتیک، رئولوژی خمیر، ویژگی‌های فیزیکوشیمیایی آرد
کلیدواژه Artificial neural network ,Genetic Algorithm ,Dough rheology ,Physicochemical properties of flour ,شبکه عصبی مصنوعی ,الگوریتم ژنتیک ,رئولوژی خمیر ,ویژگی‌های فیزیکوشیمیایی آرد
آدرس
پست الکترونیکی mohamdif@ut.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved