|
|
مدل سازی سینتیک خشک کردن پیاز در یک خشک کن بستر سیال مجهز به کنترل کننده رطوبت با استفاده از روش های رگرسیونی، منطق فازی و شبکه های عصبی مصنوعی
|
|
|
|
|
نویسنده
|
گنجه محمد ,جعفری مهدی ,قنبری فرید ,دزیانی مسعود ,عزتی رقیه ,سلیمانی مریم
|
منبع
|
علوم تغذيه و صنايع غذايي ايران - 1391 - دوره : 7 - شماره : 5 - صفحه:399 -407
|
چکیده
|
سابقه و هدف: مدل سازی سینتیک خشک شدن با استفاده از روشهای جدید مدل سازی از جمله منطق فازی و شبکه های عصبی مصنوعی می تواند به بهینه سازی فرایند و کاهش انرژی مصرفی کمک کند. در این پژوهش علاوه بر مدل سازی رگرسیونی، در رویکردی جدید اصول منطق فازی و شبکه های عصبی مصنوعی به صورت ترکیبی و مکمل هم به کار برده شده و مدلی فازی – عصبی ارائه ودر نهایت توپولوژی بهینه شبکه های عصبی مصنوعی برای خشک کردن پیاز معرفی شده و ماتریس های ضرایب وزنی آن داده شد.مواد و روش ها: در این پژوهش ورقه های نازک پیاز در یک خشک کن بستر سیال آزمایشگاهی با سه دمای 40، 50 و 60 درجه سانتیگراد و دو سرعت هوای 2 و 3 متر بر ثانیه در رطوبت هوای ثابت خشک گردید و جهت بررسی سینیتیک خشک کردن آن از سه روش مدلسازی رگرسیونی، منطق فازی و شبکه های عصبی مصنوعی استفاده شد. یافته ها: در روش مدلسازی تجربی با برازش داده های آزمایشگاهی حاصل با معادلات جبری شناخته شده مربوط به سینتیک خشک کردن، با استفاده از ابزار برازش منحنی نرم افزار matlab و تکنیک رگرسیون غیر خطی، مدل تقریب دیفوزیون با ضریب همبستگی 9999/0، ریشه میانگین مربعات خطای 004157/0 و مجموع مربعات خطای 0005702/0 از بین 9 مدل موجود به عنوان بهترین معادله جبری بین متغیرها تعیین گردید. برای شبیه سازی، درون یابی و افزایش نسبت های رطوبت اندازه گیری شده، از ابزار منطق فازی در نرم افزار matlab با بکارگیری مدل ممدانی در قالب قواعد اگر آنگاه و توابع عضویت مثلثی استفاده شد و با وارد کردن نتایج مستخرج از مدل فازی در ابزار شبکه های عصبی مصنوعی، شبکه پس انتشار پیشخور با توپولوژی 2 5 1، و ضریب همبستگی 99956/0 و میانگین مربعات خطای 000039385/0 با بکارگیری تابع فعال سازی تانژانت سیگموئید هیپربولیکی، الگوی یادگیری لونبرگ – مارکوات و چرخه یادگیری 1000 اپچ به عنوان بهترین مدل عصبی ارائه گردید. نتیجه گیری: در مجموع می توان گفت ترکیب اصول منطق فازی و شبکه های عصبی مصنوعی روشی مناسب و قابل اطمینان برای مدل سازی و پیش بینی سینیتیک خشک کردن پیاز و محصولات مشابه می باشد.واژه های کلیدی: خشک کن بستر سیال، رگرسیون، شبکه های عصبی مصنوعی، مدلسازی، منطق فازی
|
کلیدواژه
|
Fluidized bed drier ,Regression ,Artificial neural networks ,Modeling ,Fuzzy logic ,خشک کن بستر سیال، رگرسیون، شبکه های عصبی مصنوعی، مدلسازی، منطق فازی
|
آدرس
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|