|
|
|
|
approximation of a leading coefficient in an inverse heat conduction problem via the ritz method
|
|
|
|
|
|
|
|
نویسنده
|
ghorbani maryam ,rashedi kamal
|
|
منبع
|
mathematics interdisciplinary research - 2025 - دوره : 10 - شماره : 2 - صفحه:159 -182
|
|
چکیده
|
this paper presents a numerical approach for reconstructing the leading coefficient in an inverse heat conduction problem (ihcp). we consider a one-dimensional heat equation with known input data, including the initial condition, a supplementary temperature measurement at the final time, and two integral observations. by incorporating the terminal condition, the unknown spatially dependent coefficient is eliminated, reducing the problem to a nonclassical parabolic equation. the unknown temperature distribution and its derivatives are approximated and applied to the modified governing equation, which is then discretized using operational matrices of differentiation. to ensure stable derivative estimation, the method is coupled with a regularization technique. a least squares scheme is employed to formulate a nonlinear system of algebraic equations, which is solved using newton’s method. the reliability of the proposed solution is demonstrated through several numerical examples.
|
|
کلیدواژه
|
least squares technique ,inverse heat equation ,leading coefficient
|
|
آدرس
|
university of scince and technology of mazandaran, department of mathematics, iran, university of scince and technology of mazandaran, department of mathematics, iran
|
|
پست الکترونیکی
|
k.rashedi@mazust.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|