>
Fa   |   Ar   |   En
   modified‎ ‎step‎ ‎size‎ ‎for‎ ‎enhanced‎ ‎stochastic gradient descent‎: ‎convergence and experiments  
   
نویسنده soheil shamaee mahsa ,fathi hafshejani sajad
منبع mathematics interdisciplinary research - 2024 - دوره : 9 - شماره : 3 - صفحه:237 -253
چکیده    ‎this paper introduces a novel approach to enhance the performance of the stochastic gradient descent (sgd) algorithm by incorporating a modified decay step size based on frac{1}{sqrt{t}}‎. ‎the proposed step size integrates a logarithmic term‎, ‎leading to the selection of smaller values in the final iterations‎. ‎our analysis establishes a convergence rate of o(frac{ln t}{sqrt{t}}) for smooth non-convex functions without the polyak-łojasiewicz condition‎. ‎to evaluate the effectiveness of our approach‎, ‎we conducted numerical experiments on image classification tasks using the fashion-mnist and cifar10 datasets‎, ‎and the results demonstrate significant improvements in accuracy‎, ‎with enhancements of $0.5% and 1.4% observed‎, ‎respectively‎, ‎compared to the traditional frac{1}{sqrt{t}} step size‎. ‎the source code can be found at اttps://github.com/shamaeem/lnsqrtstepsize.
کلیدواژه stochastic gradient descent‎، ‎decay step size‎، ‎convergence rate
آدرس ‎university of kashan‎, ‎faculty of mathematical science‎, ‎department of computer science, iran, ‎shiraz university of technology‎, ‎department of applied mathematics, iran
پست الکترونیکی s.fathi@sutech.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved