|
|
lee weight and generalized lee weight for codes over $z_{2^n}$
|
|
|
|
|
نویسنده
|
farhang baftani farzaneh
|
منبع
|
mathematics interdisciplinary research - 2023 - دوره : 8 - شماره : 1 - صفحه:27 -33
|
چکیده
|
let $mathbb{z}_m$ be the ring of integers modulo $m$ in which $m=2^n$ for arbitrary $n$. in this paper, we will obtain a relationship between $wt_l(x), wt_l(y)$ and $wt_l(x+y)$ for any $x, y in mathbb{z}_m$. let $d_r^l(c)$ denote the $r$-th generalized lee weight for code $c$ in which $c$ is a linear code of length $n$ over $mathbb{z}_4$. also, suppose that $c_1$ and $ c_2$ are two codes over $mathbb{z}_4$ and $c$ denotes the $(u, u+v)$-construction of them. in this paper, we will obtain an upper bound for $d_r^l(c)$ for all $r$, $1 leq r leq rank(c)$. in addition, we will obtain $d_1^l(c)$ in terms of $d_1^l(c_1)$ and $d_1^l(c_2)$.
|
کلیدواژه
|
linear code ,hamming weight ,generalized lee weight ,$(u، u+v)$- construction of codes
|
آدرس
|
islamic azad university, ardabil branch, department of mathematics, iran
|
پست الکترونیکی
|
far_farhang2007@yahoo.com; f.farhang@iauardabil.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|