>
Fa   |   Ar   |   En
   unconditionally stable difference scheme for the numerical solution of nonlinear rosenau-kdv equation  
   
نویسنده mohebbi akbar ,faraz zahra
منبع mathematics interdisciplinary research - 2016 - دوره : 1 - شماره : 2 - صفحه:291 -304
چکیده    In this paper we investigate a nonlinear evolution model described by the rosenau-kdv equation. we propose a threelevel average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of o(τ2 + h2). furthermore we show the existence and uniqueness of numerical solutions. comparing the numerical results with other methods in the literature show the efficiency and high accuracy of the proposed method.
کلیدواژه finite difference scheme ,solvability ,unconditional stability ,convergence
آدرس university of kashan, faculty of mathematical sciences, department of applied mathematics, ایران, university of kashan, faculty of mathematical sciences, department of applied mathematics, ایران
پست الکترونیکی zahrafaraz44@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved