>
Fa   |   Ar   |   En
   seidel signless laplacian energy of graphs  
   
نویسنده ramane harishchandra s. ,gutman ivan ,patil jayashri b. ,jummannaver raju b.
منبع mathematics interdisciplinary research - 2017 - دوره : 2 - شماره : 2 - صفحه:181 -191
چکیده    Let s(g) be the seidel matrix of a graph g of order n and let ds (g) = diag(n − 1 − 2d1, n − 1 − 2d2, . . . , n − 1 − 2dn) be the diagonal matrix with di denoting the degree of a vertex vi in g. the seidel laplacian matrix of g is defined as sl(g) = ds (g) − s(g) and the seidel signless laplacian matrix as sl+(g) = ds (g) + s(g). the seidel signless laplacian energy esl+ (g) is defined as the sum of the absolute deviations of the eigenvalues of sl+(g) from their mean. in this paper, we establish the main properties of the eigenvalues of sl+(g) and of esl+ (g).
کلیدواژه seidel laplacian eigenvalues ,seidel laplacian energy ,seidel signless laplacian matrix ,seidel signless laplacian eigenvalues ,seidel signless laplacian energy
آدرس karnatak university, department of mathematics, india, university kragujevac, faculty of science, serbia, hirasugar institute of technology, department of mathematics, india, karnatak university, department of mathematics, india
پست الکترونیکی rajesh.rbj065@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved