>
Fa   |   Ar   |   En
   eigenvalues of the cayley graph of some groups with respect to a normal subset  
   
نویسنده jalali-rad maryam
منبع mathematics interdisciplinary research - 2017 - دوره : 2 - شماره : 2 - صفحه:193 -207
چکیده    Set x = {m11, m12, m22, m23, m24, zn, t4n, sd8n, sz(q), g2(q), v8n}, where m11, m12, m22, m23, m24 are mathieu groups and zn, t4n, sd8n, sz(q), g2(q) and v8n denote the cyclic, dicyclic, semi-dihedral, suzuki, ree and a group of order 8n presented by v8n = (a, b | a2n = b4 = e, aba = b−1, ab−1a = b), respectively. in this paper, we compute all eigenvalues of cay(g, t ), where g ∈ x and t is minimal, second minimal, maximal or second maximal normal subset of g {e} with respect to its size. in the case that s is a minimal normal subset of g {e}, the summation of the absolute value of eigenvalues, energy of the cayley graph, is evaluated.
کلیدواژه simple group ,cayley graph ,eigenvalue ,energy.
آدرس university of kashan, faculty of mathematical sciences, department of pure mathematics, ایران
پست الکترونیکی jalali6834@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved