>
Fa   |   Ar   |   En
   eigenvalues for tridiagonal 3-toeplitz matrices  
   
نویسنده shams solary maryam
منبع journal of mahani mathematical research - 2021 - دوره : 10 - شماره : 2 - صفحه:63 -72
چکیده    In this paper, we study the eigenvalues of real tridiagonal 3𝑇oeplitz matricesof different order. when the order of a tridiagonal 3𝑇oeplitz matrix is n = 3𝑘 + 2, the eigenvalues were found explicitly. here, we consider the distribution of eigenvaluesfor a tridiagonal 3toeplitz matrix of orders 𝑛 = 3𝑘 and 𝑛 = 3𝑘 + 1. we explain ourmethod by finding roots of a combination of chebyshev polynomials of the secondkind. this distribution solves the eigenproblem for integer powers of such matrices.
کلیدواژه 3-𝑇oeplitz matrix ,chebyshev polynomials ,eigenvalue
آدرس payame noor university, department of applied mathematics, iran
پست الکترونیکی shamssolary@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved