|
|
|
|
on the solutions of the diophantine equation $f_{n_1}+f_{n_2}+f_{n_3}+f_{n_4}=11^a$
|
|
|
|
|
|
|
|
نویسنده
|
earp-lynch benjamin ,earp-lynch simon ,el baz asmae
|
|
منبع
|
journal of algebra and related topics - 2025 - دوره : 13 - شماره : 1 - صفحه:73 -85
|
|
چکیده
|
Let $f_{n}$ denote the $n$th fibonacci number. in this paper, we solve the diophantine equation $f_{n_1}+f_{n_2}+f_{n_3}+f_{n_4}=y^a$ in integers $n_1,n_2,n_3,n_4,a$ for $y=11$. in doing so, we disprove a recent conjecture made by diouf and tiebekabe in cite{d-t}.
|
|
کلیدواژه
|
linear recurrences، exponential diophantine problems، baker’s method
|
|
آدرس
|
carleton university, department of mathematics, canada, carleton university, department of mathematics, canada, la faculté des sciences dhar el mahraz fès, department of mathematics, morocco
|
|
پست الکترونیکی
|
asmae.elbaz@usmba.ac.ma
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|