>
Fa   |   Ar   |   En
   on the solutions of the diophantine equation $f_{n_1}+f_{n_2}+f_{n_3}+f_{n_4}=11^a$  
   
نویسنده earp-lynch benjamin ,earp-lynch simon ,el baz asmae
منبع journal of algebra and related topics - 2025 - دوره : 13 - شماره : 1 - صفحه:73 -85
چکیده    Let $f_{n}$ denote the $n$th fibonacci number‎. ‎in this paper‎, ‎we solve the diophantine equation $f_{n_1}+f_{n_2}+f_{n_3}+f_{n_4}=y^a$ in integers $n_1,n_2,n_3,n_4,a$ for $y=11$‎. ‎in doing so‎, ‎we disprove a recent conjecture made by diouf and tiebekabe in cite{d-t}‎.
کلیدواژه linear recurrences‎، ‎exponential diophantine problems‎، ‎baker’s method
آدرس carleton university, department of mathematics, canada, carleton university, department of mathematics, canada, la faculté des sciences dhar el mahraz fès, department of mathematics, morocco
پست الکترونیکی asmae.elbaz@usmba.ac.ma
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved