>
Fa   |   Ar   |   En
   estimating the sand shear strength from its grain characteristics using an artificial neural network model and multiple regression analysis  
   
نویسنده mousavi maryam ,jiryaei sharahi morteza
منبع aut journal of civil engineering - 2021 - دوره : 5 - شماره : 3 - صفحه:403 -420
چکیده    Determination of soil shear strength is always among the most important issues in geotechnical problems. in this research, various neural network models and multiple regression are developed to obtain shear strength parameter of the sandy soil from physical parameters of roundness (r), maximum and minimum dry densities (γdmax, γdmin), relative density (dr), and grain sizes, d10, d30, d50, and d60. firstly, the effect of these physical parameters on the shear strength of sands is examined by soil laboratory tests. for this purpose, laboratory tests of the direct shear, maximum and minimum dry densities, and sieve analysis are conducted. subsequently, the laboratory results are used as a data set to develop an artificial neural network and multiple regression models to predict shear strength parameters. finally, the efficiency and appropriateness of each approach are discussed. results showed that both neural network and regression are precise, appropriate, and inexpensive methods to predict soil shear strength parameters.
کلیدواژه neural network ,multiple regression ,sand ,shear strength ,grain characteristics
آدرس qom university of technology, civil engineering department, iran, qom university of technology, civil engineering department, iran
پست الکترونیکی jiryaei@qut.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved