>
Fa   |   Ar   |   En
   k-distance enclaveless number of a graph  
   
نویسنده mojdeh doost ali ,masoumi iman
منبع caspian journal of mathematical sciences - 2022 - دوره : 11 - شماره : 1 - صفحه:345 -357
چکیده    For an integer k ≥ 1, a k-distance enclaveless number (or k-distance b-differential) of a connected graph g = (v,e) is ψk(g) = max{|(v − x) ∩ nk,g(x)| : x ⊆ v }. in this paper, we establish upper bounds on the k-distance enclaveless number of a graph in terms of its diameter, radius and girth. also, we prove that for connected graphs g and h with orders n and m respectively, ψk(g × h) ≤ mn − n − m + ψk(g) + ψk(h) + 1, where g × h denotes the direct product of g and h. in the end of this paper, we show that the k-distance enclaveless number ψk(t) of a tree t on n ≥ k + 1 vertices and with n1 leaves satisfies inequality ψk(t) ≤ k(2n−2+n1) 2k+1 and we characterize the extremal trees.
کلیدواژه k-distance enclaveless number ,diameter ,radius ,girth ,direct product
آدرس university of mazandaran, faculty of mathematical sciences, department of mathematics, iran, tafresh university, department of mathematics, iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved