>
Fa   |   Ar   |   En
   composition operators between growth spaces on circular and strictly convex domains in complex banach spaces  
   
نویسنده rezaei sh. ,hassanlou m.
منبع caspian journal of mathematical sciences - 2020 - دوره : 9 - شماره : 2 - صفحه:182 -190
چکیده    Let ωx be a bounded, circular and strictly convex domain in a complex banach space x, and h(ωx) be the space of all holomorphic functions from ωx to c. the growth space a^ν (ωx) consists of all f ∈ h(ωx) such that |f(x)| ≤ cν(rωx (x)), x ∈ ωx, for some constant c > 0, whenever rωx is the minkowski functional on ωx and ν : [0, 1) → (0, ∞) is a nondecreasing, continuous and unbounded function. for complex banach spaces x and y and a holomorphic map φ : ωx → ωy , put cφ(f) = f ◦ φ, f ∈ h(ωy ). we characterize those φ for which the composition operator cφ : a ω (ωy ) → a^ν (ωx) is a bounded or compact operator.
کلیدواژه composition operator ,growth space ,circular domain
آدرس islamic azad university, aligudarz branch, department of mathematics, iran, urmia university, khoy faculty of engineering, iran
پست الکترونیکی m.hassanlou@urmia.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved