>
Fa   |   Ar   |   En
   signless laplacian spectral moments of graphs and ordering some graphs with respect to them  
   
نویسنده taghvaee fatemeh ,fath-tabar gholam hossein
منبع journal of algebraic structures and their applications - 2014 - دوره : 1 - شماره : 2 - صفحه:133 -141
چکیده    Let g=(v,e) be a simple graph. denote by d(g) the diagonal matrix diag(d1,⋯,dn), where di is the degree of vertex i and a(g) the adjacency matrix of g. the signless laplacianmatrix of g is q(g)=d(g)+a(g) and the k−th signless laplacian spectral moment of graph g is defined as tk(g)=∑ni=1qki, k⩾0, where q1,q2, ⋯, qn are the eigenvalues of the signless laplacian matrix of g. in this paper we first compute the k−th signless laplacian spectral moments of a graph for small k and then we order some graphs with respect to the signless laplacian spectral moments.
کلیدواژه spectral moments sequence ,signless laplacian ,generalized petersen graph ,t-order
آدرس university of kashan, faculty of mathematical sciences, department of pure mathematics, ایران, university of kashan, faculty of mathematical sciences, department of pure mathematics, ایران
پست الکترونیکی fahtabar@kashanu.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved